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TEMPLATES INCLUDING
SELF-ASSEMBLED BLOCK COPOLYMER
FILMS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a divisional of U.S. patent application
Ser. No. 12/834,097, filed Jul. 12, 2010, now U.S. Pat. No.
8,609,221 issued Dec. 17, 2013, which is a divisional of U.S.
patent application Ser. No. 11/761,589, filed Jun. 12, 2007,
now U.S. Pat. No. 8,404,124, issued Mar. 26, 2013, the dis-
closure of each of which is hereby incorporated herein in its
entirety by this reference.

TECHNICAL FIELD

Embodiments of the invention relate to methods of fabri-
cating nanostructures by use of thin films of self-assembling
block copolymers, and devices resulting from those methods.

BACKGROUND OF THE INVENTION

As the development of nanoscale mechanical, electrical,
chemical and biological devices and systems increases, new
processes and materials are needed to fabricate nanoscale
devices and components. Optical lithographic processing
methods are not able to accommodate fabrication of struc-
tures and features at the nanometer level. The use of self-
assembling diblock copolymers presents another route to pat-
terning at nanometer dimensions. Diblock copolymer films
spontaneously assembly into periodic structures by
microphase separation of the constituent polymer blocks after
annealing, for example, by thermal annealing above the glass
transition temperature of the polymer or by solvent annealing,
forming ordered domains at nanometer-scale dimensions.
Following self-assembly, one block of the copolymer can be
selectively removed and the remaining patterned film used,
for example, as an etch mask for patterning nanosized fea-
tures into the underlying substrate. Since the domain sizes
and periods (L) involved in this method are determined by
the chain length of a block copolymer (MW), resolution can
exceed other techniques such as conventional photolithogra-
phy, while the cost of the technique is far less than electron
beam (E-beam) lithography or EUV photolithography, which
have comparable resolution.

The film morphology, including the size and shape of the
microphase-separated domains, can be controlled by the
molecular weight and volume fraction of the AB blocks of a
diblock copolymer to produce lamellar, cylindrical, or spheri-
cal morphologies, among others. For example, for volume
fractions at ratios greater than about 80:20 of the two blocks
(AB) of a diblock polymer, a block copolymer film will
microphase separate and self-assemble into a periodic spheri-
cal domains with spheres of polymer B surrounded by a
matrix of polymer A. For ratios of the two blocks between
about 60:40 and 80:20, the diblock copolymer assembles into
periodic cylindrical domains of polymer B within a matrix of
polymer A. For ratios between about 50:50 and 60:40, lamel-
lar domains or alternating stripes of the blocks are formed.
Domain size typically ranges from 5-50 nm.

Researchers have demonstrated the ability to chemically
differentiate a surface such that some areas are preferentially
wetting to one domain of a block copolymer and other areas
are neutral wetting to both blocks. Periodic cylindrical struc-
tures have been grown in parallel and perpendicular orienta-
tions to substrates within trenches by thermal annealing
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cylindrical-phase block copolymers. A primary requirement
for producing perpendicular cylinders is that the trench floor
must be non-preferential or neutral wetting to both blocks of
the copolymer. For producing parallel-oriented half-cylin-
ders, the trench floor must by preferentially wetting by the
minor copolymer block.

A film composed of periodic hexagonal close-packed cyl-
inders, for example, can be useful in forming an etch mask to
make structures in an underlying substrate for specific appli-
cations such as magnetic storage devices. However, many
applications require a more complex layout of elements for
forming contacts, conductive lines and/or other elements
such as DRAM capacitors.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention are described below with
reference to the following accompanying drawings, which
are for illustrative purposes only. Throughout the following
views, the reference numerals will be used in the drawings,
and the same reference numerals will be used throughout the
several views and in the description to indicate same or like
parts.

FIG. 1 illustrates a diagrammatic top plan view of a portion
of a substrate at a preliminary processing stage according to
an embodiment of the present disclosure. FIG. 1A is an eleva-
tional, cross-sectional view of the substrate depicted in FIG.
1 taken along line 1A-1A.

FIGS. 2 and 3 are diagrammatic top plan views of the
substrate of FIG. 1 at subsequent processing steps according
an embodiment of the invention. FIGS. 2A and 3A illustrate
elevational, cross-sectional views of a portion of the substrate
depicted in FIGS. 2 and 3 taken, respectively, along lines
2A-2A and 3A-3A. FIGS. 2B and 3B illustrate elevational,
cross-sectional views of another portion of the substrate
depicted in FIGS. 2-3 taken, respectively, along lines 2B-2B
and 3B-3B.

FIG. 4 is a diagrammatic top plan view of a portion of a
substrate at a preliminary processing stage according to
another embodiment of the disclosure. FIGS. 4A and 4B are
elevational, cross-sectional views of portions of the substrate
depicted in FIG. 4 taken, respectively, along lines 4A-4A and
4B-4B.

FIGS. 5 and 6 illustrate diagrammatic top plan views of the
substrate depicted in FIG. 4 at subsequent processing stages.
FIGS. 5A and 6A are elevational, cross-sectional views of a
portion of the substrates depicted in FIGS. 5 and 6, respec-
tively, taken along lines 5A-5A and 6 A-6A. FIGS. 5B and 6B
are elevational, cross-sectional views of another portion of
the substrate depicted in FIGS. 5 and 6, respectively, taken
along lines 5B-5B and 6B-6B.

FIGS. 7 and 8 are diagrammatic top plan views of the
substrate of FIG. 2 at subsequent processing steps according
to another embodiment of the invention. FIGS. 7A and 8A
illustrate elevational, cross-sectional views of a portion of the
substrate depicted in FIGS. 7 and 8 taken, respectively, along
lines 7A-7A and 8A-8A. FIGS. 7B and 8B are elevational,
cross-sectional views of a portion of the substrate depicted in
FIGS. 7 and 8 taken, respectively, along lines 7B-7B and
8B-8B.

FIG. 9 is a diagrammatic top plan view of the substrate of
FIG. 2 at a subsequent processing step according to another
embodiment of the invention to form preferential and neutral
wetting surfaces. FIGS. 9A and 9B illustrate elevational,
cross-sectional views of a portion of the substrate depicted in
FIG. 9 taken, respectively, along lines 9A-9A and 9B-9B.
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FIG. 10 is a diagrammatic top plan view of the substrate of
FIG. 2 at a subsequent processing step according to another
embodiment of the disclosure. FIGS. 10A and 10B depict
elevational, cross-sectional view of a portion of the substrate
depicted in FIG. 10 taken, respectively, along lines 10A-10A
and 10B-10B.

FIG. 11 is a diagrammatic top plan view of the substrate of
FIG. 2 at a subsequent processing step according to another
embodiment of the invention to form roughened trench floors
for a preferential wetting surface. FIGS. 11A and 11B illus-
trate elevational, cross-sectional views of a portion of the
substrate depicted in FIG. 11 taken, respectively, along lines
11A-11A and 11B-11B.

FIGS. 12-12B and FIGS. 13-13B are diagrammatic top
plan views and elevational, cross-sectional views of the sub-
strate of F1G. 3 at subsequent stages in the fabrication of a film
composed of arrays of cylindrical domains according to an
embodiment of the present disclosure.

FIGS. 14 and 16 are top plan views of the substrate of FIG.
13 at subsequent processing steps according to an embodi-
ment of the invention to form a mask and arrays of conductive
contacts and lines in a substrate. FIGS. 12A, 14A and 16 A are
elevational, cross-sectional views of a portion of the substrate
depicted in FIGS. 12, 14, and 16 taken, respectively, along
lines 12A-12A to 14A-14A and 16A-16A. FIGS. 12B-14B
and 16B are elevational, cross-sectional views of a portion of
the substrate depicted in FIGS. 12, 14 and 16 taken, respec-
tively, along lines 12B-12B to 14B-14B and 16B-16B.

FIGS. 15A and 15B are cross-sectional views of the sub-
strate depicted in FIGS. 14A and 14B, respectively, at a
subsequent processing stage.

DETAILED DESCRIPTION OF THE INVENTION

The following description with reference to the drawings
provides illustrative examples of devices and methods
according to embodiments of the invention. Such description
is for illustrative purposes only and not for purposes of lim-
iting the same.

In the context of the current application, the term “semi-
conductor substrate” or “semiconductive substrate” or “semi-
conductive wafer fragment” or “wafer fragment” or “wafer”
will be understood to mean any construction comprising
semiconductor material, including but not limited to bulk
semiconductive materials such as a semiconductor wafer (ei-
ther alone or in assemblies comprising other materials
thereon), and semiconductive material layers (either alone or
in assemblies comprising other materials). The term “sub-
strate” refers to any supporting structure including, but not
limited to, the semiconductive substrates, wafer fragments or
wafers described above.

“L,” is the inherent pitch (bulk period or repeat unit) of
structures that self-assemble upon annealing from a self-
assembling (SA) block copolymer or a blend of a block
copolymer with one or more of'its constituent homopolymers.

In embodiments of the invention, processing conditions
utilize graphoepitaxy techniques that use topographical fea-
tures, e.g., the sidewalls and ends of trenches, as constraints to
induce the formation and registration of polymer domains of
cylindrical-phase diblock copolymers in one dimension (e.g.,
hexagonal close-packed (honeycomb) array or single row of
perpendicular cylinders) and chemically or structurally (to-
pographically) differentiated trench floors to provide a wet-
ting pattern to control orientation of the microphase separated
and self-assembling cylindrical domains in a second dimen-
sion (e.g., parallel lines of half-cylinders or perpendicular-
oriented cylinders). The trench floors are structured or com-
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posed of surface materials to provide a neutral wetting surface
or preferential wetting surface to impose ordering on a block
copolymer film that is then cast on top of the substrate and
annealed to produce desired arrays of nanoscale cylinders.

Embodiments of the invention provide a means of gener-
ating self-assembled diblock copolymer structures wherein
perpendicular cylinders are formed in some trenches and
parallel-oriented half-cylinders are formed in other trenches.
Control of the orientation of the cylinders is provided by the
nature of the trench floor surface. Graphoepitaxy is used to
provide parallel lines of half-cylinders, hexagonal close-
packed arrays of perpendicular cylinders, or a single row of
perpendicular cylinders within lithographically defined
trenches. A desired pattern of cylinders on a substrate, e.g., a
wafer, can be prepared by providing trenches having walls
that are selective to one polymer block of a block copolymer
and a floor composed either of a material that is block-sensi-
tive or preferentially wetting to one of the blocks of the block
copolymer in trenches where lines of parallel half-cylinders
are desired, or a material that is neutral wetting to both blocks
in trenches where an array of perpendicular cylinders are
desired. Embodiments of the invention can be used to pattern
lines and openings (holes) in the same patterning step at
pre-determined locations on a substrate.

Embodiments of the invention of methods for fabricating
arrays of cylinders from thin films of cylindrical-phase self-
assembling (SA) block copolymers are described with refer-
ence to the figures. As shown in FIGS. 1 and 1A, a substrate
10 to be etched is provided, being silicon in the illustrated
embodiment. Overlying the substrate 10 is a material layer
12. As illustrated in FIGS. 2-2B, the material layer 12 is
etched to form a desired pattern of trenches shown as trenches
14a, 145 and 14c.

The trenches can be formed using a lithographic tool hav-
ing an exposure system capable of patterning at the scale of L,
(10-100 nm). Such exposure systems include, for example,
extreme ultraviolet (EUV) lithography, dry lithography (e.g.,
248 nm, 193 nm), immersion lithography (e.g., 193 nm), and
electron beam lithography, as known and used in the art.
Conventional photolithography can attain about 58 nm fea-
tures. A method called “pitch doubling” or “pitch multiplica-
tion” can also be used for extending the capabilities of pho-
tolithographic techniques beyond their minimum pitch, as
described, forexample, in U.S. Pat. No. 5,328,810 (Lowrey et
al.), U.S. Pat. No. 7,115,525 (Abatchev, et al.), U.S. Patent
Application Publication No. 2006/0281266 (Wells) now U.S.
Pat. No. 7,396,781, issued Jul. 8, 2008, and U.S. Patent Appli-
cation Publication No. 2007/0023805 (Wells), now U.S. Pat.
No. 7,776,715, issued Aug. 17, 2010, the disclosures of which
are incorporated by reference herein. Briefly, a pattern of lines
is photolithographically formed in a photoresist layer overly-
ing a layer of an expendable material, which in turn overlies
a substrate, the expendable material layer is etched to form
placeholders or mandrels, the photoresist is stripped, spacers
are formed on the sides of the mandrels, and the mandrels are
then removed leaving behind the spacers as a mask for pat-
terning the substrate. Thus, where the initial photolithogra-
phy formed a pattern defining one feature and one space, the
same width now defines two features and two spaces, with the
spaces defined by the spacers. As a result, the smallest feature
size possible with a photolithographic technique is eftectively
decreased down to about 30 nm or more.

The trenches 14a-14¢ are structured with opposing side-
walls 16, opposing ends 18, a floor 20, a width (w,), a length
(1,) and a depth (D,). Trench 14c¢ is also structured with the
trench ends 18 angled to the sidewalls 16, for example, at an
about 60° angle, and in some embodiments, the trench ends
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are slightly rounded or curved. Portions of the material layer
12 form a spacer 12a between the trenches.

The trench sidewalls 16, edges and floors influence the
self-assembly of the polymer blocks and the structuring of the
array of nanostructures within the trenches 14a, 145, and 14c¢.
The boundary conditions of the trench sidewalls 16 impose
order in the x-direction (x-axis) and the ends 18 impose order
in the y-direction (y-axis) to impose a structure wherein each
trench contains n number of features (i.e., cylinders). Other
factors that influence the formation and alignment of ele-
ments within the trench include the width (w,) of the trench,
the formulation of the block copolymer to achieve the desired
pitch (L), the thickness (t) of the block copolymer film, and
the wetting nature of the trench surfaces.

Entropic forces drive the wetting of a neutral wetting sur-
face by both blocks, and enthalpic forces drive the wetting of
apreferential-wetting surface by the preferred block (e.g., the
minority block). The trench sidewalls 16 and ends 18 are
structured to be preferential wetting such that upon annealing,
the preferred block of the block copolymer will segregate to
the sidewalls and edges of the trench to assemble into a thin
(e.g., V4 pitch) interface (wetting) layer, and will self-as-
semble to form cylinders in the center of a polymer matrix
within each trench, the cylinders being in a perpendicular
orientation on neutral wetting floor surfaces and half-cylin-
ders in a parallel orientation in relation to preferential wetting
floor surfaces.

As illustrated in FIGS. 2-2B, trenches 14a are constructed
with a width (w,) of about 2*L or less, e.g., about 1.5*L to
about 2*L_ (e.g., about 1.75*L ) (L, being the inherent peri-
odicity or pitch value of the block copolymer) for forming a
1-D array of cylinders with a center-to-center pitch of at or
about L, (e.g., a width of about 65-75 nm for a L value of
about 36-42 nm). Trenches 145, 14¢ have a width (w,) at or
about an integer multiple of the L, value or nlL, where n=3, 4,
5, etc. (e.g., a width of about 120-2,000 nm for a L., value of
about 36-42 nm). The length (1) of the trenches is at or about
nl., where n is an integer multiple of L, typically within a
range of about n*10-n*100 nm (with n being the number of
features or structures (i.e., cylinders)). llustrated in FIG. 2
are trenches 14a having a length (1,) extending from one end
(18) to the opposing end (18), which length is greater than the
width (w,), and opposing sidewalls 16 parallel for the length
(1) of the trench. The depth (D,) of the trenches 14a, 14c,
generally over a range of about 50-500 nm. The width of the
spacer 12a between adjacent trenches can vary and is gener-
ally about L, to about nL .

As shown in FIGS. 3-3B, the floors 20 of trenches 14a, 14¢
have a neutral wetting surface (layer 22) to induce formation
of perpendicular cylinders within those trenches, and the
floors 20 of trenches 145 are preferential wetting by one block
of'a self-assembling block copolymer to induce formation of
parallel half-cylinders in those trenches. The application and
annealing of a cylindrical-phase block copolymer material
having an inherent pitch value of about L, in the trenches will
result in a single row of “n” perpendicular cylinders in
trenches 14a for the length of the trenches, “n” rows or lines
ot half-cylinders (parallel to the sidewalls 16 and trench floor
20 and in a perpendicular orientation to the trench ends 18 as
illustrated in FIGS. 13-13B) extending the length (1,) and
spanning the width (w,) of trenches 145, and a periodic hex-
agonal close-pack or honeycomb array of perpendicular cyl-
inders within trench 14¢. The cylindrical domains are sepa-
rated by a center-to-center distance (pitch distance (p)) of at
or about L.

For example, a block copolymer having a 35-nm pitch (L,
value) deposited into a 75-nm wide trench having a neutral
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wetting floor will, upon annealing, result in a zigzag pattern of
35-nm diameter perpendicular cylinders that are offset by a
half distance for the length (1,) of the trench, rather than a
single line of perpendicular cylinders aligned with the side-
walls down the center of the trench. As the L, value of the
copolymer is increased, for example, by forming a ternary
blend by the addition of both constituent homopolymers,
there is a shift from two rows to one row of the perpendicular
cylinders within the center of the trench.

In some embodiments, the substrate 10 can be a material
that is inherently preferential wetting to one of the blocks, and
aneutral wetting surface layer 22 can be provided by applying
a neutral wetting polymer (e.g., a neutral wetting random
copolymer) onto the substrate 10 and then selectively remov-
ing the layer 22 to expose portions of the preferential wetting
surface of the substrate 10. For example, in the use of a
poly(styrene-block-methyl methacrylate) block copolymer
(PS-b-PMMA), a random PS:PMMA copolymer (PS-r-
PMMA) which exhibits non-preferential or neutral wetting
toward PS and PMMA can be applied. The polymer layer can
be affixed by grafting (on an oxide substrate) or by crosslink-
ing (any surface) using UV radiation or thermal processing.

As shown in FIGS. 4-4B, in some embodiments, a neutral
wetting layer 22' can be formed on the substrate 10' prior to
forming the overlying material layer 12'. For example, a blan-
ket layer 22' of a photo-crosslinkable random copolymer
(e.g., PS-r-PMMA) can be spin-coated onto the substrate 10'
and photo-crosslinked (arrows |, | | ) inselect areas 224' using
a reticle 24', for example. The material layer 12' can then be
formed over layer 22' and the trenches etched to expose the
neutral wetting layer 22" at the trench floors 20", as depicted in
FIGS. 5-5B, including crosslinked sections 224'. As shown in
FIGS. 6-6B, non-crosslinked and exposed regions of the neu-
tral wetting layer 22' can then be selectively removed, e.g., by
a solvent rinse, to expose the substrate 10' (e.g., silicon with
native oxide) as a preferential wetting surface 204' in trenches
145', with the crosslinked neutral wetting layer 22a' providing
a neutral wetting surface 20a' in trenches 144", 14¢".

In another embodiment depicted in FIGS. 7-7B, a neutral
wetting random copolymer can be applied after forming the
trenches, for example, as a blanket coat by spin-coating into
each of the trenches 144"-14¢" and thermally processed
({ | {) to flow the material into the bottom of the trenches by
capillary action, which can result in crosslinking the neutral
wetting polymer layer 22". To remove the crosslinked poly-
mer layer 22" from selected regions, a photoresist layer 24"
can be coated over the structure, patterned and developed as
shown in FIGS. 8-8B, and an oxygen (O,) dry etch (arrows
} {|) can be conducted to remove the crosslinked random
copolymer layer 22" from trenches 145" where a preferential
wetting floor is desired, by exposing the substrate 10" (e.g.,
silicon with native oxide). The photoresist 24" can then be
removed, resulting in the structure shown in FIGS. 3-3B.

For example, a neutral wetting polymer (NWP) such as a
random copolymer of polystyrene (PS), polymethacrylate
(PMMA) with hydroxyl group(s) (e.g., 2-hydroxyethyl meth-
acrylate (P(S-r-MMA-r-HEMA)) (e.g., about 58% PS) can be
can be selectively grafted to a material layer (e.g., an oxide
floor) as alayer 22" of about 5-10 nm thick by heating at about
160° C. for about 48 hours (FIGS. 7-7B). See, for example, In
et al., Langmuir, 2006, 22, 7855-7860, the disclosure of
which is incorporated by reference herein. The grafted poly-
mer can then be removed from trenches 145" by applying and
developing a photoresist layer 24" and etching (e.g., O, dry
etch) the exposed polymer layer 22" to produce preferential
wetting floors (e.g., substrate 10" of silicon with native oxide)
in trenches 145" (FIGS. 8-8B).
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A surface that is neutral wetting to PS-b-PMMA can also
be prepared by spin coating a blanket layer of a photo- or
thermally cross-linkable random copolymer such as a benzo-
cyclobutene- or azidomethylstyrene-functionalized random
copolymer of styrene and methyl methacrylate (e.g., poly
(styrene-r-benzocyclobutene-r-methyl methacrylate (PS-r-
PMMA-r-BCB)). For example, such a random copolymer can
comprise about 42% PMMA, about (58-x)% PS and x % (e.g.,
about 2-3%) of either polybenzocyclobutene or poly(para-
azidomethylstyrene)). An azidomethylstyrene-functional-
ized random copolymer can be UV photo-crosslinked (e.g.,
1-5 MW/cm"™2 exposure for about 15 seconds to about 30
minutes) or thermally crosslinked (e.g., at about 170° C. for
about 4 hours) to form a crosslinked polymer mat as a neutral
wetting layer 22". A benzocyclobutene-functionalized ran-
dom copolymer can be thermally cross-linked (e.g., at about
200° C. for about 4 hours or at about 250° C. for about 10
minutes). The layer 22" can be globally photo- or thermal-
crosslinked (FIGS. 7-7B), masked using a patterned photo-
resist 24" (FIGS. 8-8B), and the unmasked sections can be
selectively removed by etching (arrows | | |) (e.g., O, etch)
to expose preferential-wetting floors 20", e.g., substrate 10"
of silicon with native oxide, in trenches 145",

In other embodiments, as illustrated in FIGS. 9-9B, por-
tions of the neutral wetting layer 22" in trenches 144", 14"
can be photo-crosslinked through a reticle 24" (arrows |, | | )
and the non-crosslinked material in trenches 145" can be
removed, for example, using a solvent rinse, resulting in the
structure shown in FIGS. 3-3B.

Referring now to FIGS. 10-10B, in another embodiment in
which the substrate 10"" is silicon (with native oxide),
another neutral wetting surface for PS-b-PMMA can be pro-
vided by hydrogen-terminated silicon. For example, the
floors 20" of trenches 145"" can be masked, e.g., using a
patterned photoresist layer 24", and the floors 20" of
trenches 14a"", 14¢"" can be selectively etched (arrows | |, | ),
for example, with a hydrogen plasma, to remove the oxide
material and form hydrogen-terminated silicon 22", which is
neutral wetting with equal affinity for both blocks of a block
copolymer material such as PS-b-PMMA. H-terminated sili-
con can be prepared by a conventional process, for example,
by a fluoride ion etch of a silicon substrate (with native oxide
present, about 12-15 A) by exposure to an aqueous solution of
hydrogen fluoride (HF) and buffered HF or ammonium fluo-
ride (NH,F), by HF vapor treatment, or by a hydrogen plasma
treatment (e.g., atomic hydrogen). The photoresist layer 24""
can then be removed, resulting in a structure as shown in
FIGS. 3-3B.

In other embodiments, a neutral wetting layer (22) can be
provided by grafting a random copolymer such as PS-r-
PMMA selectively onto an H-terminated silicon substrate
(e.g., 20" floor) in FIGS. 10-10B by an in situ free radical
polymerization of styrene and methyl methacrylate using a
di-olefinic linker such divinyl benzene which links the poly-
mer to the surface to produce an about 10-15 nm thick film.

In other embodiments, a layer of a preferential wetting
material can be applied onto the surface of the substrate
exposed as the floors of trenches 144", 145", 14¢". For
example, a layer of oxide or silicon nitride, etc., can be depos-
ited as a blanket layer into the trenches 144", 146", 14¢" (e.g.,
as shownin FIGS. 7-7B), followed by selective removal of the
material from the floor of trenches 144", 14¢" to expose a
neutral wetting surface or, in other embodiments, a neutral
wetting material (e.g., a random copolymer) can then be
selectively applied onto the exposed floors of trenches 14a",
14c¢”.
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In yet another embodiment, the floors of the trenches can
be made neutral or preferential wetting by varying the rough-
ness of the surface of the floors of the trenches, as described,
for example, in Sivaniah et al., Macromolecules 2005, 38,
1837-1849, and Sivaniah et al., Macromolecules 2003, 36,
5894-5896, the disclosure of which are incorporated by ref-
erence herein. A grooved, or periodic, grating-like substrate
topography having a lateral periodicity and structure at or
above a critical roughness value (e.g.,  .R where ¢, =2m/A_, R
is the (root-mean-square) vertical displacement of the surface
topography about a mean horizontal plane, and A, is the lateral
periodicity in the surface topography) can be provided to
form a neutral wetting surface (e.g., trenches 14a, 14c¢) for
formation of perpendicular cylinders (under conditions of a
neutral wetting air surface). The floors of trenches 145 can be
provided with a low surface roughness below the critical q R,
value for formation of parallel-oriented half-cylinders in
those trenches. The critical roughness of the floor surface
topography can also be adjusted according to the molecular
weight of the block copolymer to achieve a perpendicular
orientation of cylinders. The roughness of the substrate sur-
face can be characterized using atomic force microscopy
(AFM).

For example, as shown in FIGS. 11-11B, in some embodi-
ments, the floors of trenches 14a”, 14¢” can be selectively
etched (arrows | | |) to provide a pattern of grooves 26" at or
above a critical roughness (q,R), the floors being sufficiently
rough to form a neutral wetting surface to induce formation of
perpendicular-oriented cylinders within those trenches. In
other embodiments, a material 26" such as indium tin oxide
(ITO), can be e-beam deposited (arrows | | | ) onto the sur-
face of floors 20" of trenches 14a”, 14¢" to form a sufficiently
rough and neutral wetting surface and, in some embodiments,
sputter coated onto the surface of floors 20" of trenches 145"
to form a relatively smooth and preferential wetting surface.

Referring now to FIGS. 3-3B, the sidewalls 16 and ends 18
of the trenches are preferential wetting by one block of the
copolymer. The material layer 12 defining the trench surfaces
can be an inherently preferential wetting material, or in other
embodiments, alayer of a preferential wetting material can be
applied onto the surfaces of the trenches. For example, in the
use of a PS-b-PMMA block copolymer, the material layer 12
can be composed of silicon (with native oxide), oxide (e.g.,
silicon oxide, Si0,), silicon nitride, silicon oxycarbide, ITO,
silicon oxynitride, and resist materials such as such as meth-
acrylate-based resists, among other materials, which exhibit
preferential wetting toward the PMMA block. In other
embodiments, a layer of a preferential wetting material such
as a polymethylmethacrylate (PMMA) polymer modified
with an —OH containing moiety (e.g., hydroxyethyl-
methacrylate) can be applied onto the surfaces of the
trenches, for example, by spin coating and then heating (e.g.,
to about 170° C.) to allow the terminal OH groups to end-graft
to oxide sidewalls 16 and ends 18 of the trenches. Non-gratted
material can be removed by rinsing with an appropriate sol-
vent (e.g., toluene). See, for example, Mansky et al., Science,
1997, 275, 1458-1460, and In et al., Langmuir, 2006, 22,
7855-7860, the disclosures of which are incorporated by ref-
erence herein.

Referring now to FIGS. 12-12B, a cylindrical-phase self-
assembling block copolymer material 28 having an inherent
pitchatorabout L, (or aternary blend of block copolymer and
homopolymers blended to have a pitch at or about L) is then
deposited, typically by spin casting or spin-coating into the
trenches 14a-14¢ and onto the floors 20. The block copolymer
material can be deposited onto the patterned surface by spin
casting from a dilute solution (e.g., about 0.25-2 wt % solu-
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tion) of the copolymer in an organic solvent such as dichlo-
roethane (CH,Cl,) or toluene, for example.

The copolymer material layer 28 is deposited into the
trenches 14a-14c¢ to a thickness (t) such that during an anneal,
the capillary forces pull excess material (e.g., greater than a
monolayer) into the trenches 14a-14¢. The resulting thick-
ness of layer 28 in the trench is at about the L value of the
copolymer material such that the copolymer film layer will
self-assemble upon annealing to form an array of cylindrical
elements, for example, perpendicular cylindrical domains
having a diameter at or about 0.5 L, (e.g., about 20 nm) over
the neutral wetting surface 22 of trenches 14a, 14¢, and a
single layer of lines of parallel-oriented half-cylinders with a
diameter at or about 0.5 L, over the preferential wetting floor
20 of trenches 145b. The film thickness can be measured, for
example, by ellipsometry. Depending on the depth (D,) of the
trenches, the cast block copolymer material 28 can fill the
trenches where the trench depth is about equal to L., (D,~L,),
or form a thinner film over the trench floor where the trench
depth (D,) is greater than L., (D,>L,) as depicted. A thin film
of the copolymer material 28 generally less than L can be
deposited on the spacers 12qa, this material will not self-
assemble, as it is not thick enough to form structures.

Although diblock copolymers are used in the illustrative
embodiment, other types of block copolymers (i.e., triblock
or multiblock copolymers) can be used. Examples of diblock
copolymers include poly(styrene-block-methylmethacry-
late) (PS-b-PMMA), polyethyleneoxide-polyisoprene, poly-
ethyleneoxide-polybutadiene, polyethyleleoxide-polysty-
rene, polyetheleneoxide-polymethylmethacrylate,
polystyrene-polyvinylpyridine,  polystyrene-polyisoprene
(PS-b-PI), polystyrene-polybutadiene, polybutadiene-poly-
vinylpyridine, and polyisoprene-polymethylmethacrylate,
among others. Examples of triblock copolymers include poly
(styrene-block methyl methacrylate-block-ethylene oxide).
An example of a PS-b-PMMA copolymer material (L =35
nm) is composed of about 70% PS and 30% PMMA with a
total molecular weight (M,,) of 67 kg/mol, to form ~20 nm
diameter cylindrical PMMA domains in a matrix of PS.

The block copolymer material can also be formulated as a
binary or ternary blend comprising a SA block copolymer and
one or more homopolymers of the same type of polymers as
the polymer blocks in the block copolymer, to produce blends
that swell the size of the polymer domains and increase the L,
value of the polymer. The volume fraction of the homopoly-
mers can range from 0 to about 40%. An example of a ternary
diblock copolymer blend is a PS-b-PMMA/PS/PMMA
blend, for example, 46K/21K PS-b-PMMA containing 40%
20K polystyrene and 20K poly(methylmethacrylate). The L,
value of the polymer can also be modified by adjusting the
molecular weight of the block copolymer.

Optionally, ellipticity (“bulging”) can be induced in the
structures by creating a slight mismatch between the trench
and the spacer widths and the inherent pitch (L) of the block
copolymer or ternary blend, as described, for example, by
Cheng et al., “Self-assembled One-Dimensional Nanostruc-
ture Arrays,” Nano Lett., 6 (9),2099-2103 (2006), which then
reduces the stresses that result from such mismatches.

Referring now to FIGS. 13-13B, the block copolymer
material layer 28 is then annealed to cause the component
polymer blocks to phase separate and self-assemble accord-
ing to the wetting material on the trench floors 20 and the
preferential wetting surfaces of the trench sidewalls 16 and
ends 18. This imposes ordering on the block copolymer film
as it is annealed and the blocks self-assemble, resulting in a
1-D array of perpendicular-oriented cylinders 30 (minority
block) in a matrix 34 (majority block) for the length (nL,) of
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each trench 144 (neutral wetting floor), parallel-oriented half-
cylinder(s) 32 in the matrix 34 for the length of each trench
14b, and a hexagonal close pack array of perpendicular cyl-
inders 30 in trench 14¢. A layer 30qa, 32a of the minority block
wets the preferential wetting sidewalls 16 and ends 18 of the
trenches 14a-14c.

The copolymer film can be thermally annealed to above the
glass transition temperature of the component blocks of the
copolymer material. For example, a PS-b-PMMA copolymer
film can be annealed at a temperature of about 180-285° C. in
a vacuum oven for about 1-24 hours to achieve the self-
assembled morphology. The resulting morphologies of the
block copolymer (i.e., perpendicular and parallel orientation
of cylinders) can be examined, for example, using atomic
force microscopy (AFM), transmission electron microscopy
(TEM), and scanning electron microscopy (SEM).

The diameter of the perpendicular cylinders 30 and width
of the half-cylinders 32 is generally about 0.5 L, (e.g., about
20 nm). The center-to-center distance (pitch distance, p)
between adjacent cylindrical domains within a trench is gen-
erally atorabout L (e.g., about 40 nm for a 46/21 PS/PMMA
block copolymer).

The hexagonal array of perpendicular cylinders 30 in
trench 14¢ contains n rows of cylinders according to the width
(w,) of the trench with the cylinders in each row being offset
by about L, (pitch distance (p) or center-to-center distance)
from the cylinders in the adjacent rows. Each row contains
“m” number of cylinders according to the length (1,) of the
trench and the shape of the trench ends 18 (e.g., rounded,
angled, curved, etc.), with some rows having greater or less
than m cylinders. The perpendicular cylinders 30 are spaced
apart at a pitch distance (p) at or about L, between cylinders
in the same row and an adjacent row, and at a pitch distance
(p) at or about L *cos(m/6) or about 0.866*L, distance
between two parallel lines where one line bisects the cylin-
ders in a given row and the other line bisects the cylinders in
an adjacent row.

The annealed and ordered film may then be treated to
crosslink the polymer segments (e.g., the PS matrix 34) to fix
and enhance the strength of the self-assembled polymer
blocks within the trenches. The polymers can be structured to
inherently crosslink (e.g., upon exposure to ultraviolet (UV)
radiation, including deep ultraviolet (DUV)radiation), or one
or both of the polymer blocks of the copolymer material can
be formulated to contain a crosslinking agent. Non-ordered
material outside the trenches (e.g., on spacers 12a) may then
be removed.

For example, in one embodiment, the trench regions can be
selectively exposed through a reticle (not shown) to crosslink
only the self-assembled films within the trenches, and option-
ally, a wash can then be applied with an appropriate solvent
(e.g., toluene) to remove non-crosslinked portions of the film
28 (e.g., on the spacers 12a). In another embodiment, the
annealed films can be crosslinked globally, a photoresist layer
can be applied to pattern and expose the areas of the film
outside the trench regions (e.g., over the spacers 12a), and the
exposed portions of the film can be removed, for example by
an oxygen (O,) plasma treatment. In other embodiments, the
spacers 12a are narrow in width, for example, a width (w,) of
one of the copolymer domains (e.g., about L) such that the
non-crosslinked block copolymer material 28 on the spacers
is minimal and no removal is required. Material on the spacers
124 that is generally featureless need not be removed.

After annealing and the copolymer material is ordered, the
minority polymer domains can be selectively removed from
the films to produce a template 39 for use in patterning the
substrate 10. For example, as shown in FIGS. 14-14B, selec-
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tive removal of the cylindrical domains 30, 32 (e.g., of
PMMA) will produce an array of openings 36, 38 within the
polymer matrix 34 (e.g., of PS), with the openings varying
according to the orientation of the cylindrical domains within
the trenches. Since the cylindrical domains 30 extend through
the polymer matrix 34 in a perpendicular orientation from the
floor 20 of the trenches 144, 14¢, only openings 36 will extend
to the trench floors 20, with the majority block matrix com-
ponent 34 (e.g., PS) remaining underneath the lines of half-
cylinder openings 38.

As shown in FIGS. 15A and15B, the half-cylinder open-
ings 38 can be extended to expose the underlying substrate 10
by removing the underlying matrix component 34 (e.g., PS),
for example, by a plasma O, etch. The cylindrical openings 36
generally have a diameter of about 5-50 nm and an aspect
ratio of about 1:1 to about 1:2, and the lined openings
(grooves) 38 have a width of about 5-50 nm and an aspect
ratio of about 1:1. Resulting film 40 can then be used in
patterning (arrows |, | ) the substrate 10 to form a configura-
tion of cylindrical openings 42 and grooves (lines) 44 (shown
in phantom) extending to active areas or elements 46. The
residual matrix 34 (film 40) can be removed and the openings
42, 44 filled with a material 48 e.g., a metal or conductive
alloy such as Cu, Al, W, Si, and Ti;N,, among others, as
shown in FIGS. 16-16B to form arrays of cylindrical contacts
50 and parallel conductive lines 52, for example, to an under-
lying active area, contact, or conductive line 46. The cylin-
drical openings 42 can also be filled with a metal-insulator-
metal-stack to form capacitors with an insulating material
such as SiO,, Al,O;, HfO,, ZrO,, SrTi0O;, and the like. Fur-
ther processing can be conducted as desired.

Methods of the disclosure provide a means of generating
self-assembled diblock copolymer structures where perpen-
dicular cylinders preferentially form on some regions on a
substrate and parallel cylinders form on other regions. In
some embodiments, the desired orientation is controlled by
the structure of the substrate (e.g., wafer) and/or the nature of
the surface material. The methods provide ordered and reg-
istered elements on a nanometer scale that can be prepared
more inexpensively than by electron beam lithography or
EUV photolithography. The feature sizes produced and
accessible by this invention cannot be prepared by conven-
tional photolithography. Embodiments of the invention can
be used to pattern lines and openings (holes) on a substrate in
the same patterning step, thus eliminating processing steps
compared to conventional process flows. The described meth-
ods can be readily employed and incorporated into existing
semiconductor manufacturing process flows.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement which is calculated to
achieve the same purpose may be substituted for the specific
embodiments shown. This application is intended to cover
any adaptations or variations that operate according to the
principles of the invention as described. Therefore, it is
intended that this invention be limited only by the claims and
the equivalents thereof. The disclosures of patents, references
and publications cited in the application are incorporated by
reference herein.

What is claimed is:

1. A template for etching a substrate, the template compris-
ing:

cylindrical openings and half-cylindrical openings extend-

ing through a polymer matrix in an array of trenches,
each trench of the array of trenches having sidewalls
parallel to one another along a length of the trench,
opposing ends, a floor, and a width, the polymer matrix
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in first trenches comprising the cylindrical openings in a
perpendicular orientation to the floor of the first trenches
and extending the length of the first trenches, the cylin-
drical openings separated at a pitch distance of about L.,
and the polymer matrix in second trenches comprising
half-cylindrical openings in a parallel orientation to the
floor of the second trenches and extending the length of
the second trenches, the half-cylindrical openings sepa-
rated at a pitch distance of about L.

2. The template of claim 1, wherein the cylindrical open-
ings in the polymer matrix in the first trenches are in a hex-
agonal array.

3. The template of claim 2, wherein the ends of the first
trenches are rounded.

4. The template of claim 2, wherein the width of each of the
first trenches is about L, or about n*L, where n is an integer
of'3 or greater.

5. The template of claim 1, wherein the cylindrical open-
ings are in a single line extending the length of the first
trenches.

6. The template of claim 5, wherein the width of each ofthe
first trenches is from about 1.5*%L, to about 2*L,,,.

7. The template of claim 1, wherein the cylindrical open-
ings extend through the polymer matrix to the floors of the
first trenches.

8. The template of claim 1, wherein the polymer matrix is
crosslinked and comprises a majority block of a self-as-
sembled block copolymer.

9. A template for etching a substrate, the template compris-
ing:

cylindrical openings and half-cylindrical openings extend-
ing through a polymer matrix of a majority block of a
self-assembled block copolymer film within trenches in
a material, each trench having sidewalls parallel to one
another along a length of the trench, opposing ends, a
floor, and a width, the polymer matrix in first trenches
comprising the cylindrical openings perpendicular to the
floor of the first trenches and extending the length of the
first trenches, and separated at a pitch distance of about
L, and the polymer matrix in second trenches compris-
ing the half-cylindrical openings parallel to the floor of
the second trenches and extending the length of the
second trenches and separated at a pitch distance of
about L.

10. A template for etching a substrate, the template com-

prising:

a self-assembled block copolymer film in first trenches in a
material, the first trenches having sidewalls parallel to
one another along a length of the first trenches and the
self-assembled block copolymer film in the first trenches
comprising cylindrical openings therein in a perpen-
dicular orientation to a floor of the first trenches and
extending the length of the first trenches;

the self-assembled block copolymer film in second
trenches in the material, the second trenches having
sidewalls parallel to one another along a length of the
second trenches and the self-assembled block copoly-
mer film in the second trenches comprising half-cylinder
openings therein in a perpendicular orientation from
ends of the second trenches and in a parallel orientation
to floors and to the sidewalls of the second trenches; and

the self-assembled block copolymer film in third trenches
in the material, the third trenches having sidewalls par-
allel to one another along a length of the third trenches
and the self-assembled block copolymer film in the third
trenches comprising cylindrical openings therein in a
perpendicular orientation to a floor of the third trenches.
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11. The template of claim 10, wherein the cylindrical open-
ings in the self-assembled block copolymer film in the first
trenches and the half-cylinder openings in the self-assembled
block copolymer film in the second trenches extend to respec-
tive floors of the first trenches and the second trenches.

12. The template of claim 10, wherein the half-cylinder
openings in the self-assembled block copolymer film in the
second trenches overlie the polymer matrix in the second
trenches.

13. The template of claim 10, wherein the cylindrical open-
ings in the self-assembled block copolymer film in the first
trenches have a center-to-center pitch at or about L, where L,
is the pitch value of a block copolymer of the self-assembled
block copolymer film.

14. The template of claim 10, wherein the third trenches
comprise ends angled about 60° to the sidewalls of the third
trenches.

15. The template of claim 10, wherein a width of the
half-cylinder openings in the self-assembled block copoly-
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mer film in the second trenches is about 0.5 L, where L, is the
pitch value of a block copolymer of the self-assembled block
copolymer film.

16. The template of claim 10, wherein the cylindrical open-
ings in the self-assembled block copolymer film in the first
trenches and in the self-assembled block copolymer film in
the third trenches have a diameter of from about 5 nm to 50
nm and an aspect ratio of from about 1:1 to about 1:2.

17. The template of claim 10, wherein the half-cylinder
openings in the self-assembled block copolymer film in the
second trenches have a width of from about 5 nm to 50nm and
an aspect ratio of about 1:1.

18. The template of claim 10, wherein the cylindrical open-
ings in the self-assembled block copolymer film in the third
trenches comprise a hexagonal array of the cylindrical open-
ings.
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